Varying coefficient models for mapping quantitative trait loci using recombinant inbred intercrosses.
نویسندگان
چکیده
There has been a great deal of interest in the development of methodologies to map quantitative trait loci (QTL) using experimental crosses in the last 2 decades. Experimental crosses in animal and plant sciences provide important data sources for mapping QTL through linkage analysis. The Collaborative Cross (CC) is a renewable mouse resource that is generated from eight genetically diverse founder strains to mimic the genetic diversity in humans. The recombinant inbred intercrosses (RIX) generated from CC recombinant inbred (RI) lines share similar genetic structures of F(2) individuals but with up to eight alleles segregating at any one locus. In contrast to F(2) mice, genotypes of RIX can be inferred from the genotypes of their RI parents and can be produced repeatedly. Also, RIX mice typically do not share the same degree of relatedness. This unbalanced genetic relatedness requires careful statistical modeling to avoid false-positive findings. Many quantitative traits are inherently complex with genetic effects varying with other covariates, such as age. For such complex traits, if phenotype data can be collected over a wide range of ages across study subjects, their dynamic genetic patterns can be investigated. Parametric functions, such as sigmoidal or logistic functions, have been used for such purpose. In this article, we propose a flexible nonparametric time-varying coefficient QTL mapping method for RIX data. Our method allows the QTL effects to evolve with time and naturally extends classical parametric QTL mapping methods. We model the varying genetic effects nonparametrically with the B-spline bases. Our model investigates gene-by-time interactions for RIX data in a very flexible nonparametric fashion. Simulation results indicate that the varying coefficient QTL mapping has higher power and mapping precision compared to parametric models when the assumption of constant genetic effects fails. We also apply a modified permutation procedure to control overall significance level.
منابع مشابه
Bayesian multiple quantitative trait loci mapping for recombinant inbred intercrosses.
The Collaborative Cross (CC) is a renewable mouse resource that mimics the genetic diversity in humans. The recombinant inbred intercrosses (RIX) generated from CC recombinant inbred (RI) lines share similar genetic structures to those of F(2) individuals. In contrast to F(2) mice, genotypes of RIX can be inferred from the genotypes of their RI parents and can be produced repeatedly. Also, RIX ...
متن کاملMapping in structured populations by resample model averaging.
Highly recombinant populations derived from inbred lines, such as advanced intercross lines and heterogeneous stocks, can be used to map loci far more accurately than is possible with standard intercrosses. However, the varying degrees of relatedness that exist between individuals complicate analysis, potentially leading to many false positive signals. We describe a method to deal with these pr...
متن کاملQuantitative trait locus analysis using recombinant inbred intercrosses: theoretical and empirical considerations.
We describe a new approach, called recombinant inbred intercross (RIX) mapping, that extends the power of recombinant inbred (RI) lines to provide sensitive detection of quantitative trait loci (QTL) responsible for complex genetic and nongenetic interactions. RIXs are generated by producing F1 hybrids between all or a subset of parental RI lines. By dramatically extending the number of unique,...
متن کاملQuantitative trait loci mapping of panicle traits in rice
In this study 90 individuals of recombinant inbred lines (RILs) were developed by crossing subspecies of japonica rice cultivar, ‘Nagdong’ and an indica type cultivar, ‘Cheongcheong’. These individuals were used to identify the quantitative trait loci of panicle traits using SSR markers. A genetic linkage map was constructed using one hundred fifty four simple sequence repeat ...
متن کاملQuantitative trait loci mapping of panicle traits in rice
In this study 90 individuals of recombinant inbred lines (RILs) were developed by crossing subspecies of japonica rice cultivar, ‘Nagdong’ and an indica type cultivar, ‘Cheongcheong’. These individuals were used to identify the quantitative trait loci of panicle traits using SSR markers. A genetic linkage map was constructed using one hundred fifty four simple sequence repeat ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 190 2 شماره
صفحات -
تاریخ انتشار 2012